
Separation Methods Based on Distributions in 
Discrete Stages (02/02/15)

1. Chemical Separations: The Big Picture

Classification and comparison of methods

2. Fundamentals of Distribution Separations

3. Separation Methods Based on Distributions in Discrete Stages

Such as solvent extraction and distillation

4. Introduction to Distribution Separations in chromatographic

methods. The plate theory, the rate theory; van Deemter's equation.
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Counter-Current Extraction

Phase 1

Phase 2
[A] = 0.01 M

[B] = 1 M

Phase 1
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Extraction 2Addition of fresh phases to
Both phase 1 and 2

1

1
1

1

1

1

2

2

1

1

2

2

V1=V2=10 mL

DcA= 10, DcB=0.1

fA1,1=0.091
fB1,1=0.909

fA2,1=0.909
fB2,1=0.091

fA2,2=0.826
fB2,2=0.008

fA1,2=0.008
fB1,2=0.826

fA1N,2=0.083
fB1N,2=0.083

Total A =0.909
Total B =0.091

Total A = 0.091
Total B = 0.909

fA2N,2=0.083
fB2N,2=0.083
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21 1 2fA2,2=0.826
fB2,2=0.008

fA2N,3=0.151
fB2N,3=0.015
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fB1,2=0.826
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Counter-Current Extraction

= 0.298=29.8%

21 1 2fA2,2=0.826
fB2,2=0.008

fA2N,3=0.151
fB2N,3=0.015

fA1N,3=0.015
fB1N,3=0.151

fA1,2=0.826
fB1,2=0.008

Results: recovery of A in phase 2 = 0.826+0.151=0.977=97.7%

Final purity of A in phase 2 =
(0.01M)*(0.01L)*(0.977)

(0.01M)*(0.01L)*(0.977) + (1.00 M)*(0.01L)*(0.023)

Purification yield = 
0.298

0.0099
= 30

Recovery of A in phase 2 = 0.909 = 90.9%

Final purity of A in phase 2 = 0.091 (9.1%)

Purification yield of A =       9.2

99.2%

5.4%

5.45

One-step Two-step Counter-current

97.7%

29.8%

30
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F. Craig Apparatus and Craig Countercurrent distribution

Lyman C. Craig, Ph.D.

Albert Lasker Award

(1) Counter-current extraction are useful in that they improve 
both the recovery and purification yield of A.  However, the 
technique is time-consuming and tedious to perform.

(2) To overcome these difficulties L. C. Craig developed a 
device in 1994 to automate this method.  Known as the 
Craig Apparatus, this device uses a series of “separatory 
funnels” to perform a counter-current extraction.  The patern 
formed by the movement of a solute through the system is 
known as a counter-current distribution. 
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http://www.chem.uoa.gr/Applets/AppletCraig/Appl_Craig2.html
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(4) The result of this process is that solutes partition between the phases in each tube, but 
eventually all travel to the right and off of the apparatus, where they are collected.  

(5) Since this system involves both rate and phase separation processes (i.e., distribution of 
solutions between two phases affecting their rate of travel through the system), The Craig 
countercurrent distribution is often as a simple model to describe chromatography.  In fact, 
anther term often used for countercurrent distribution is countercurrent chromatography (CCC).     

The Essence of Chromatography: p889 ~ 893 9



H. Theory of Countercurrent distribution:
(1)  As in simple extraction, the distribution of A in any tube can be calculated based on it 

concentration distribution ratio, where

fphase1= (1 + Dc V2/V1)

1

fphase2 = 1- fphase1,1

(fraction of A not removed from phase 1)

(fraction of A extracted into phase 2)

(2) In describing the Craig distribution, the terms fphase1 and fphase2 are often replaced with 
the terms q and p, where

q = fphase1= (1 + Dc V2/V1)

1

p = fphase2 = 1- fphase1,1= 1 - q

(3) The ratio of q/p (i.e., the ration of the fraction (or moles) of A in the stationary phase to the 
faction (or moles) of A in the mobile phase at equilibrium) is known as the capacity factor k.  

k’ = p/q
= mole Amobile phase/moles Astationary phase
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(4) The equation for k = q/p may also be rewritten in terms of p and q, where

p = k’/(1 + k’)

q = 1/(1+k’)

(5) k and concentration distribution ratio (Dc) are related by the expression

k’ = Dc V2/V1

In other works, k’ is another way to describe the distribution of A between two phase. Dc
and k only differ in that k is based on the moles of A present rather than its concentration.  
For this reason, k’ is sometimes referred to as the mass distribution ratio.

(6) The use of k’ to describe the distribution of a solute is particularly valuable in situations 
where the exact volumes of the mobile and stationary phases are not known.  One common 
example of this is on chromatography (k=1/k’).

(7) The value of k’, or p and q, can also be used to describe the distribution of a solute A in 
the Craig apparatus.
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Development of solute distribution in Craig Apparatus
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Development of solute distribution in Craig Apparatus
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(8) The distribution of A in this system after r transfers is given by the binomial expression of 
the equation 

(q + p)r =1
Where:                    (q+p)1 = q + p

(q+p)2 = q2 + 2 qp + p2

(q+p)3 = q3 + 3 q2p + 3qp2 + p3,   etc

(9) After given number of transfers (r), the relative amount of A in any tube n is   

Pr,n =
r!

n! (r-n)!
pn qr-n

Where: Pr,n = Fraction of A in tube n after transfer r.

Transfer 3

0 1 2 3 4 5 6 7

(q+p)3q3 3q2p 3q2p p3

Mobile phase

Stationary phase

Good news: We can get the distribution of solute among Craig tubes 
(chromatographic column)

Bad news: give no distribution shape and position.

http://www.chem.uoa.gr/Applets/AppletCraig/Appl_Craig2.html
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http://www.chem.uoa.gr/Applets/AppletCraig/Appl_Craig2.html

(10) The binomial can be expended as Gaussian distribution when n larger than 20 (rpq>3).

Pr,n =
2π rqp*

1
Exp [-(n-rp)2/2rpq)]

Where: Pr,n = Fraction of A in tube n after transfer r.

(11) The tube containing the largest amount of A (nmax) after r transfer (peak position):
nmax = rp = r [k’/(1 + k’)]

(12) The width of the Gaussian distribution function (peak width) is determined by 

rqp = σ = r k’/(1+k’)2

(13) By comparing how the position of a “peak’s” maximum and its width change with the 
number of transfers (or number of equilibria), it becomes clear that the reason that solute 
become better separated with more transfers is that the distance between their peak maximum 
is growing faster than their peak widths (i.e. nmax ∞ r, but σ ∞        ).r

This is the fundamental reason why the Craig apparatus and chromatography can be 
used to separate compounds.
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http://www.chem.uoa.gr/Applets/AppletCraig/Appl_Craig2.html
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