
Separation Methods Based on Distributions in 
Discrete Stages (01/21/15)

1. Chemical Separations: The Big Picture

Classification and comparison of methods

2. Fundamentals of Distribution Separations

3. Separation Methods Based on Distributions in Discrete Stages

Such as solvent extraction and distillation

4. Introduction to Distribution Separations in chromatographic

methods. The plate theory, the rate theory; van Deemter's equation.



Question: What Controls the Selectivity of Nanotubes?

Why ?
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Entropy Effects in Phase Distribution               

(1) The entropy change (ΔSi ) relates to the way the solute molecule i fits 
into the liquid structure of two respective phases and the associated 
reorientation and repositioning of the liquid molecules.

(2) In most separation cases, the structural changes accompanying the 
arrival of a solute molecule are similar in different phases, and thus the 
entropy term is much smaller than the enthalpy term.  

(3) In the case of hydrophobic interaction, the presence of non-polar 
intruder induces a semi-rigid structure in the surrounding water 
molecules, and leads to a significant reduction in entropy.  In such case,  
the entropy change play a major role in influencing phase distribution. 
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Hydrophobic Interaction (entropy affects solubility)

(4) The entropy term plays a significant role whenever one of the 
phase has Porous Media, providing the mean pore diameter is of the 
same order of magnitudes as the diameter of the partitioning species.
Porous media used in separation field include various polymer gels, 
membranes, and chromatographic packing used for size exclusion 
chromatography (stationary phase). 
The partitioning species involved are of macromolecular or colloidal 
size: protein, DNA, virus, synthetic polymers, inorganic colloids and may 
others.



Pore media

In the porous media, the motion of contained molecules are severely
Restricted. The loss of freedom in molecular motion is associated with a 
corresponding loss of entropy. 

Polymer

Entropy Effects in Phase Distribution: 
porous media                    

Example:

When a linear polymer snake its way into a long thin pore,the 
polymer would lose the normal conformational entropy associated 
its bends and twists in space.  The unfavorable entropy change 
leads to a rejection of this polymer from the pore.



Distribution coefficient in porous media

K =
ci,pores
ci,bulk

Where, ci,pores is the amount of i per unit volume of pore space (not 
including the volume of the solid matrix), and ci,bulk is the concentration 
of bulk solution.

(1) the partitioning specie i is a sphere
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K =
accessible volume

true volume

When the absence of disturbing force, the distribution k is simply the volume 
ratio (A reduction in entropy naturally accompanies the the shrinkage in 
effective volume).
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(This expression is valid for 2a < dc; K = 0 for 2a > dc) 

Distribution coefficient in porous media

If dc is replaced by 4/s, where s is the wall area of the capillary per unit 
volume of the pore space, we get

K = 1- sa
2
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(2) the partitioning specie i with other shapes 
The distribution coefficient K for such complex bodies can no longer 
be considered as a simple volume ratio.  Instead, K becomes a 
ratio of volumes in multidimensional configuration space which all 
possible positions, orientations, and conformations must be 
considered. For  the random-plane model of pole space, 

K = sL
2-exp
-

Where, L is the mean external length (or mean projection length) -



K = sL
2-exp
-

Where, L is the mean external length (or mean projection length) 

K =
ci,pores
ci,bulk

For spheres, L = 2 a, then we get-

K = exp (-sa) = 1 – sa + (sa)2/2 + …..(-sa)n/n! 

K = 1- sa
2
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Selectivity of Nanotubes

K = sL
2-exp
-

K =
ci,pores
ci,bulk

In the presence of intermolecular interactions, ΔH plays addition role. 



Question: What Controls the Selectivity of Nanotubes?

?
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14. Put a nanotube with uniform pore of square cross section (length of the tube 
=20μm, side length of the pore=80 nm) in a solution containing 1nM of polystyrene latex 
pheres (diameter=20 nm).  Assuming no interactions between the spheres and the 
nanotube, calculate the amount of polystyrene latex spheres inside the nanotube.  If 
decrease the diameter of the polystyrene latex spheres, what is the results?

15. For thin rods of length l, it can be shown that L = l/2.  Estimate K for fibrinogen, 
which can be approximated as a thin rod of length 70 nm, partitioning into a porous 
solid with s= 0.12/nm.  What does K change to if all pore dimensions are exactly 
doubled in size?  Assume the applicability of the random-plane of pore space.

Homework



K =
accessible volume

true volume
= 1- 2a

dc

2


