Separation Sciences

1. Introduction: Fundamentals of Distribution Equilibrium
2. Gas Chromatography (Chapter 2 & 3)
3. Liquid Chromatography (Chapter 4 & 5)

4. Other Analytical Separations (Chapter 6-8)
a. Planar chromatography
b. Supercritical fluid chromatography
c. Electrophoresis
d. Centrifugation

e. Field Flow Fractionation



1. Capillary Electrophoresis

Electrophoresis

2. Gel Electrophoresis in Bio-applications
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Figure 24-22 Dartial separation of
isotopes of 1 wM chloride by capil-
lary electrophoresis with conductivi-
ty detection. Prior to detection,
eluate is passed through a cation-
exchange membrane to convert the
conductive 2 mM sodium borate
background electrolyte into poorly
conductive boric acid. [From N.
Avdalovic, C. A. Pohl, R. D
Rocklin, and J. R. Stillian, Anal.
Chem. 1993, 65, 1470.]



Capillary Electrophoresis
1. Introduction

a. electrophoresis: the migration of ions in solution under the influence
of an electric flied.
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Electrophoretic mobility (.,,) is a constant and a intrinsic property
of an ion. It is dependant on the charge and 3-D structure of the ion.

i. Molecules of similar size, the magnitude of the mobility (4, ) increases
with charge
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(solvent is H,O at 25°C)

ii. For a spherical particle of radius r moving through a fluid of viscosity
n, the friction coefficient f is

Stokes equation: f=6xnr
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C. Capillary electrophoresis

Capillary electrophoresis is formed in fused SiO, capillary tube
long ~ 0.5 m, inner diameter: 25-75 um.
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Fused SiO, Capillary Tube?

Fused silica capillary has exposed silanol groups which have a pKa
~ 2 which means that at pH’s above this there is a negative surface
charge (-SiO")
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Electroosmosis
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When DC voltage is applied, the excess positive charge ions (cations)
migrate toward cathode. This migration is called electroosmosis. The
resulted flow of bulk solvents is called electroosmotic flow (EOF)




Electroosmotic flow (EOF)

Electroosmotic mobility is the constant of proportionality between
electroosmotic velocity (u.,) and applied field E
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Electroosmotic mobility (is proportional to surface
charge density on the silica)
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Figure 1.5. Mobile phase flow profile for an open tube and a packed column with pressure-driven and
electroosmotic flow.

This is one reason why capillary electrophoresis has better separation
efficiency.



Capillary Electrophoresis
Apparent Mobility

Electroosmosis Electrophoresis
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The electroosmotic force is not necessary always stronger than the
electrophoretic force.




Anion: negative charged ion (-)

Cation: positive charged ion (+)

Anode: is an electrode through which electric current flows
into a polarized electrical device.

Positive charged electrode in electrophoresis (+)

Cathode: cathode is an electrode through which electric
current flows out of a polarized electrical device:

negative charged electrode in electrophoresis (-)



Apparent Mobility of An lon
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L, is the length from the injector to the detector

L, is the length from one end to another

V the voltage applied

t is the time required for solute to migrate from the injector to the detector

Measurement of Electroosmotic mobility
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Capillary Electrophoresis

Separation Efficiency

B
Recal H=A+—+Cuyu,

U x
No particles = no multiple paths term (A = 0)

No stationary phase = no resistance to mass transfer
term (C = 0)
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Increase velocity by increasing applied voltage, but due
to solution resistance this generates heat and
increases longitudinal diffusion (B)



Capillary Electrophoresis
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where D = diffusion coefficient (m?/s)
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i. Plate number is independent of capillary length at constant !

il. The higher the voltage, the greater the number of plates.

iil. The smaller the diffusion coefficient, the greater the number
of plates.



How many theoretical plates might we hope to attain?

Using typical values p,,, =2 x 10 m?/Ves which
corresponds to a 10 minute migration time in a 55 cm
long capillary with 25 kV (Serum albumin (a protein) with
D =0.059 x 10 m?/s, and K* with D = 2 x 10° m?/s).
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For K*: N =125, 000 plates, H=L/N=4.4 um

N

For serum albumin: N = 4.2 x 10 plates
H=L/N=0.13 um

A greater plate number means a sharper peak!
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Figure 24-13 Comparison of peak
widths for benzyl alcohol
(CgH;CH,0H}) in capillary electro-
phoresis and HPLC. [From S.
Fazio, R. Vivilecchia, L. Lesueur,
and J. Sheridan, Am. Biotech. Lab.
H January 1990, p. 10.] Separations
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with ~3 million plates have been
== 1=  demonstrated [R. D. Smith, . O.
5.2 56 8.0 6.4 6.8 70 Olivares, N. T. Nguyen, and H. R.
Udseth, Anal. Chem. 1988, 60,
Time (min) 436)].

Other on-column band-broadening

i. Joule heating , ii. Mixing due to unstable density gradients

a. Joule heating is an uneven heating thermal effect caused by
electric field (I?Rt). This effect occurs throughout the packed bed
or open tube and results in solvent at different point in the system
having different temperature. There thermal gradients are
produced because solution at the edges of the system can give
off heat more easily than that near the center.



TABLE 24-6  Heat generation in capillary electrophoresis®

cccccccccccccccccccccccccccccccc

Temperature
difference (K) |
Current density (capillary centerto)
Buffer (A/cm?) capillary wall)
100 mM sodium phosphate, 4.0 0.30
pH 7.0
50 mM sodium citratc, 0.90 0.066
pH 2.5 '
20 mM 3-(cyclohexylamino)propane 0.31 0.024

sulfonate (CAPS), pH 11.0

a. Fused silica capillary with 50-um diameter and electric field of 2.5 X 104 V /m,

SOURCE: Data from P. D. Grossman and ]. C. Colburn, Capillary Electrophoresis: Theory and
Practice (San Dicgo: Academic Press, 1992), Chapter 1.

b. The result of these thermal gradients is that solute and solvent
molecules at different points in the system mix unevenly. This gives
rise to band-broadening.

c. Ways of decreasing band-broadening due to Joule heating

(1) low current (optimizing).

Although plate number is independent of capillary length at
constant. Increasing length allows applying a higher voltage!

(2) the use of packed-bed system prevents mixing of solvent from

different regions of the system.
(3) the use of more efficient cooling prevents the formation of the

thermal gradients.



Column modification
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Instrumentation
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1. Injection (Sample volumes are typically in the nL range) :

a. Hydrodynamic injection-use of a pressure differential between
the ends of the capillary

b. Electrokinetic-injection based on the m,,, which means that
different analytes have different mobilities and the injected
sample has different composition than the original sample. It
allowing pre-separation sample focusing.



pre-separation sample focusing
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--— Absaorbance

Detection:

1. Absorption:

2. Fluorescence:
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Figure 24-24 Anion separation
with indirect ultraviolet absorbance
detection (254 nm) of CrOﬁ_ in
the background electrolyte. Thirty
anions were separated in 3 min on a
50-pm-diameter X 60-cm-long cap-
illary at 30 kV. [From W. R. Jones,
P. Jandik, and R. Pfeifer, Am. Lab.
May 1991, p. 40.]



3. Conductivity
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Modes of separation

1. Capillary Zone electrophoresis

2.Capillary iso-electric focusing

3. Micellar electrokinetic Capillary chromatography
4. Capillary gel electrophoresis

5. Capillary electrochromatography



Capillary iso-electric focusing
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In this case, the electroosmotic force is weaker than elctrophoretic force.



Micellar electrokinetic Capillary chromatography

Neutral molecule equilibrates
between free solution and
inside of micelle
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Figure 24-25 Negatively charged sodium dodecyl sulfate micelles migrate up-

; " “Nat stream against the electroosmotic flow, Neutral molecules are in dynamic equilibri-
Sodium dodccyl sulfate (ﬂ C] 2H25OSO 3 Na ) um between free solution and the inside of the micelle. The more time spent in
the micelle, the more the neutral molecule lags behind the electroosmotic flow.

Important Concepts:
i ' Electrophoresis

// e Electrophoretic mobility
KR e ol Capillary electrophoresis
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Electroosmosis and Electroosmotic flow
‘ Apparent Mobility

Separation Efficiency

Separation modes
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