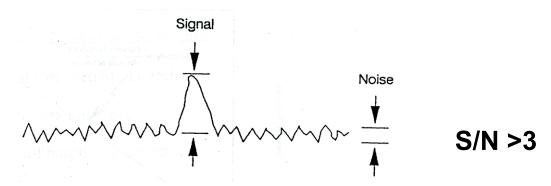
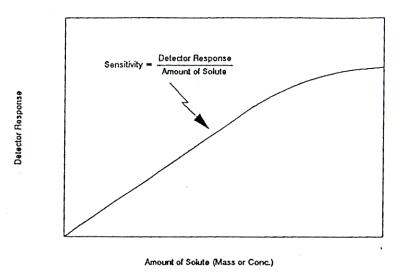
# **Gas Chromatography**

- 1. Introduction
- 2. Stationary phases
- 3. Retention in Gas-Liquid Chromatography
- 4. Capillary gas-liquid chromatography
- 5. Sample preparation and inlets

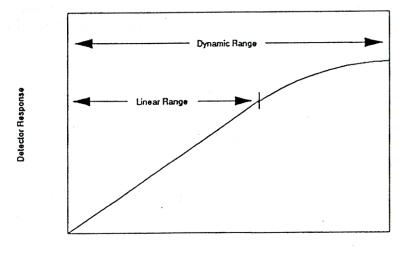
# 6. Detectors


(Chapter 2 and 3 in The essence of chromatography)

## **Detectors**


- 1. Thermal conductivity detector (TCD): Bulk physical property
- **2.** Ionization Detectors:
- **3. Optical Detectors**
- 4. Electrochemical detector
- **5. Spectroscopic detectors (Chapter 9)**

- **1. The Basics for Detectors:**
- a. Minimizing extra-column band broadening
- **b High-sensitivity detection**

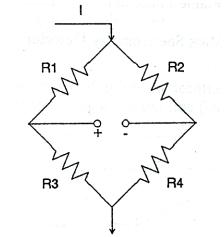

(1) Limit of Detection: what is the smallest amount of solute to be detected?



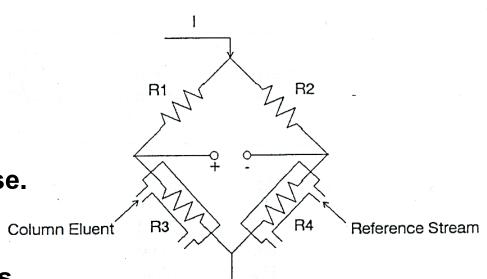
 (2) Sensitivity: How small of a change in mass or concentration can be detected? How fast its signal changes with a change in the amount or concentration of solutes



(3) Linearity or dynamic range: what mass or concentration range can be detected?




Amount of Solute (Mass or Conc.)


- (4) Selectivity: What compounds are to be detected (all or a few)?
- i. A universal detector is one which shows a response for all solutes
- ii. A selective detector is one which responds to only certain types of solutes.
- 2. Thermal Conductivity Detector (TCD)
- a. Detector design of TCD is based on an electronic circuit known as Wheatstone bridge.

b. When a current is applied, the voltage between pints (+) and (-) in the circuit will will be zero as long as the following relationship is true:

 $R_1/R_2 = R_3/R_4$ 

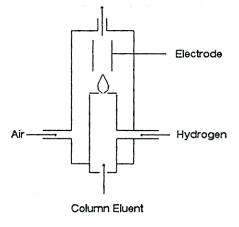


- c. In a TCD, one of these resistors is placed in contact with mobile phase leaving the column and another in a reference stream containing only pure mobile phase.
- d. As current is passed through the circuit, the wire in the resistors are heat. For those in contact with the mobile phase and reference stream, some of this heat is removed.
- e. Temperature changes leads to resistance changes of resistors.
- f. Most compound separated in GC have thermal conductivity of 1-4 X 10<sup>-5</sup>.



Thermal Conductivity of Common Carrier Gases

| Carrier<br>Gas                   | MW<br>(gamol) | Thermal<br>Conductivity<br>((°C/cm sec) x 10 <sup>-5</sup> ) |  |
|----------------------------------|---------------|--------------------------------------------------------------|--|
| с.<br>С. 2                       |               |                                                              |  |
| Ar                               | 39.95         | 5.0                                                          |  |
| $O_2$                            | 32.00         | 7.7                                                          |  |
| O <sub>2</sub><br>N <sub>2</sub> | 28.01         | 7.3                                                          |  |
| He                               | 4.00          | 38.8                                                         |  |
| $H_2$                            | 2.02          | 49.0                                                         |  |


## f. Selectivity:

The response of a TCD is about the same for all compounds. Exceptions include low MW compounds (<40 MW), which may show higher responses.

- g. Limit of detection: ~10<sup>-7</sup> M
- f. Linear range: a 10<sup>3</sup>-fold range; dynamic range: a10<sup>5</sup>-fold range

# **3. Ionization Detectors:**

- a. Flame Ionization detector (FID)
  - i. The FID is the most common type of GC detector (universal detector).
  - ii. The FID measures the production of ions when a solute is burned in a flame. These ions are collected at an electrode and create a current, allowing the solute to be detected



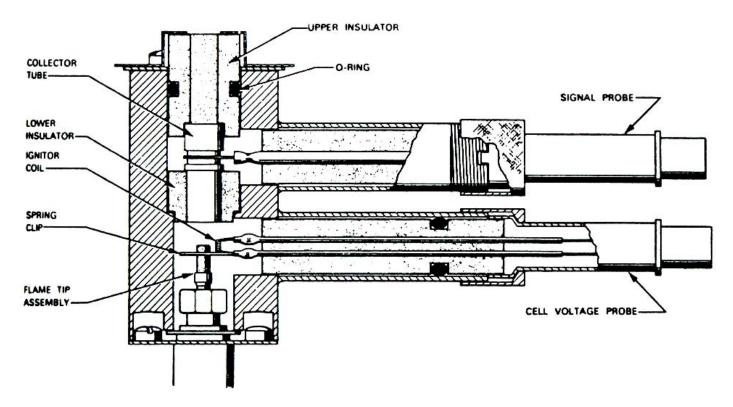



Figure 3.19. Cross-sectional view of a flame ionization detector. (©Varian Associates).

iii. A hydrogen/air flame is commonly used in FID since on ionic species are usually produced by this fuel mixture. This gives rise to a zero background current.

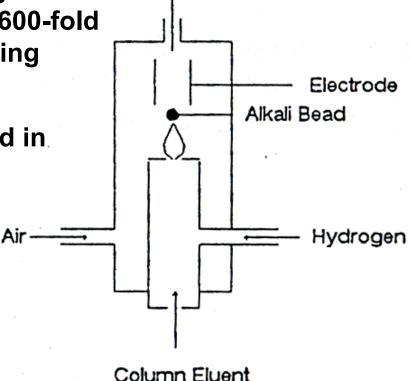
| Table 3.3                              |                                       |
|----------------------------------------|---------------------------------------|
| Contributions of structure to the resp | onse of the flame ionization detector |

| Atom   | Туре                       | Effective carbon number  |  |
|--------|----------------------------|--------------------------|--|
| С      | Aliphatic                  | 1.0                      |  |
| С      | Aromatic                   | 1.0                      |  |
| С      | Olefinic                   | 0.95                     |  |
| С      | Acetylenic                 | 1.30                     |  |
| C      | Carbonyl                   | 0                        |  |
| С      | Carboxyl                   | 0                        |  |
| C<br>C | Nitrile                    | 0.3                      |  |
| 0      | Ether                      | -1.0                     |  |
| 0      | Primary alcohol            | -0.5                     |  |
| 0      | Secondary alcohol          | -0.75                    |  |
| 0      | Tertiary alcohol           | -0.25                    |  |
| N      | In amines                  | Similar to O in alcohols |  |
| CI     | On olefinic C              | -0.05                    |  |
| CI     | Two or more on aliphatic C | -0.12 per Cl             |  |

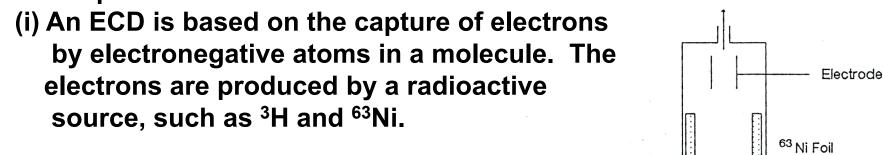
iii. Limit of detection: ~ 10<sup>-10</sup> M

iv. Linear range: a 10<sup>5</sup>-fold range; dynamic range: a10<sup>7</sup>-fold range

b. Nitrogen-phosporus detector (NPD) Flame Ionization detector (FID)

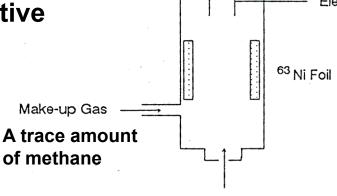

i. The NPD is also known as an alkali flame ionization detector (AFID)

 ii. A NPD is based on the same basic principles as an FID. However, a small amount of alkali metal vapor in the flame, which greatly enhances the formation of ions from nitrogen and phosphorus-containing compounds. The NPD is about 300-fold more sensitive that an FID in detecting nitrogen-containing compounds, and 600-fold More sensitive in phosphorus-containing


iii. Applications: Organophosphate and in drug analysis For determination of amine-containing or Basic drugs.

iv. Limit of detection: ~ 10<sup>-10</sup> M

v. Linear range: a 10<sup>6</sup>-fold range




- c. Electron capture detector (ECD)
- i. The ECD is a radiation-based detector selective for compound containing electronegative atoms, such as halogen.
- ii. Principle:



$$N_2 + \beta^- \longrightarrow N_2^+ + e^-$$

 $Ar_2 + \beta^- \longrightarrow Ar_2^+ + e^-$ 



(ii) In the absence of solute, a steady stream of Column Eluent these secondary electrons is produced that goes to a collector electrodes and produce a current

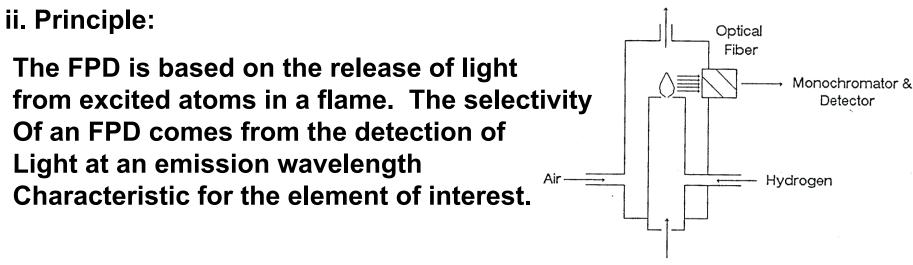
(iii) As a solute with electronegative atoms elute from column, the solute Capture some of the secondary electrons, reducing the current.

#### iii. Applications: An ECD is selective for any compounds with electronegative atoms such as halogen (I, Br, CI, F), and sulfur-containing compounds.

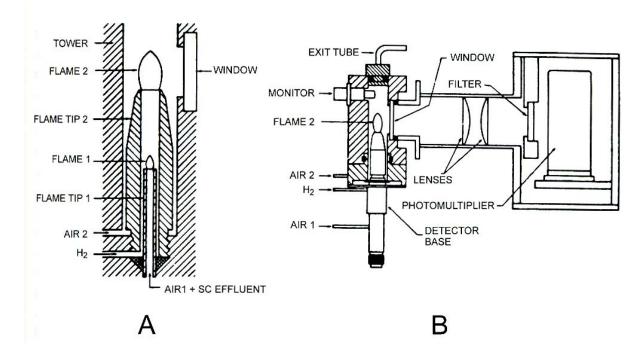
#### iv. Limit of detection: 10<sup>-14</sup> M to 10<sup>-16</sup> M

#### v. Linear range: a 10<sup>3</sup> to 10<sup>4</sup>-fold range

 Table 3.4


 Relative response of the electron-capture detector to various organic compounds

| General organic      | Relative              | Fluorocarbon                                      | Relative              |
|----------------------|-----------------------|---------------------------------------------------|-----------------------|
| compounds            | response              | compounds                                         | response              |
| Benzene              | 0.06                  | CF <sub>3</sub> CF <sub>2</sub> CF <sub>3</sub>   | 1.0                   |
| Acetone              | 0.50                  | CF <sub>3</sub> Cl                                | 3.3                   |
| Di-n-butyl ether     | 0.60                  | $CF_2 = CFCl$                                     | $1.0 \ge 10^2$        |
| Methylbutyrate       | 0.90                  | CF <sub>3</sub> CF <sub>2</sub> Cl                | $1.7 \times 10^2$     |
| 1-Butanol            | 1.00                  | $CF_2 = CCl_2$                                    | 6.7 x 10 <sup>2</sup> |
| 1-Chlorobutane       | 1.00                  | $CF_2Cl_2$                                        | 3.0 x 10 <sup>4</sup> |
| 1,4-Dichlorobutane   | 15.00                 | CHCl <sub>3</sub>                                 | 3.3 x 10 <sup>4</sup> |
| Chlorobenzene        | 75.00                 | $CHCl=CCl_2$                                      | 6.7 x 10 <sup>4</sup> |
| 1,1-Dichlorobutane   | $1.1 \ge 10^2$        | CF <sub>3</sub> Br                                | 8.7 x 10 <sup>4</sup> |
| 1-Bromobutane        | $2.8 \times 10^2$     | $CF_2ClCFCl_2$                                    | 1.6 x 10 <sup>5</sup> |
| Bromobenzene         | $4.5 \times 10^2$     | CF <sub>3</sub> CHClBr                            | 4.0 x 10 <sup>5</sup> |
| Chloroform           | 6.0 x 10 <sup>4</sup> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> I | 6.0 x 10 <sup>5</sup> |
| 1-Iodobutane         | 9.0 x 10 <sup>4</sup> | CF <sub>2</sub> BrCF <sub>2</sub> Br              | 7.7 x 10 <sup>5</sup> |
| Carbon tetrachloride | 4.0 x 10 <sup>5</sup> | CFCl <sub>3</sub>                                 | 1.2 x 10 <sup>6</sup> |


# 4. Optical Detectors

a. Flame photometric detector (FPD)

i. The FPD is a selective detector usually used for phosphorus- and sulfur-containing compounds.



Iii By including a collector electrode aboveColumn EluentThe flame, the same detector can be used bothAs an FPD and FID.



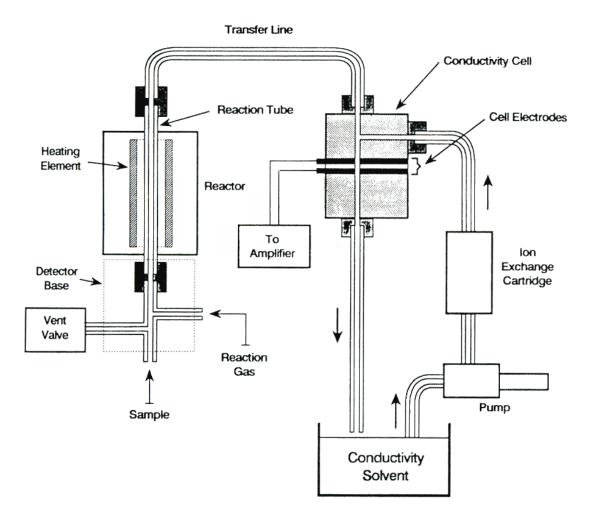
 iii. Applications: An FPD is selective for any compounds containing any atoms emitting light in the wavelength monitored. It is usually used for detecting phosphorus- and sulfurcontaining compound, which emit light at 526 and 394 nm respectively.

iv. Limit of detection: 10<sup>-14</sup> M

v. Linear range: a 10<sup>4</sup> for phosphorus, and a 10<sup>3</sup>-fold range for sulfur

## **b.** Atomic emission detector (AED)

Excitation source: plasmas (i.e., inductively coupled argon plasmas




| Element | Wavelength | Minimum       | Selectivity           | Linear              |
|---------|------------|---------------|-----------------------|---------------------|
| (X)     |            | detectable    | (g X/g C)             | range               |
|         |            | amount (pg/s) |                       |                     |
| C       | 193.1      | 2.6           |                       | 2 x 10 <sup>4</sup> |
| H       | 486.1      | 2.2           |                       | 6 x 10 <sup>3</sup> |
| Cl      | 479.5      | 39            | $2.5 \times 10^4$     | 2 x 10 <sup>4</sup> |
| Br      | 470.5      | 10            | $1.1 \times 10^4$     | $1 \times 10^3$     |
| F       | 685.6      | 40            | $3.0 \times 10^4$     | $2 \times 10^3$     |
| S       | 180.7      | 1             | $3.5 \times 10^4$     | 1 x 10 <sup>4</sup> |
| Р       | 177.5      | 1             | $5.0 \times 10^3$     | $1 \times 10^3$     |
| N       | 174.2      | 15            | $2.0 \times 10^3$     | 4 x 10 <sup>3</sup> |
| N       | 388        | 15            | 8.0 x 10 <sup>5</sup> | $1 \times 10^4$     |
| 0       | 777.2      | 50            | $3.0 \times 10^4$     | $3 \times 10^3$     |
| Sn      | 303.1      | 0.5           | $3.0 \times 10^4$     | 1 x 10 <sup>3</sup> |
| Se      | 196.1      | 4             | $5.0 \times 10^4$     | $1 \times 10^3$     |
| Hg      | 253.7      | 0.1           | $3.0 \times 10^6$     | $1 \times 10^3$     |

Table 3.5Response characteristics of the atomic emission detector to different elements

## 5. Electrochemical detector

Electrolytic conductivity detector (ELCD). The ELCD is used primarily As an element-selective detector for halogen-, sulfur- and nitrogen-Containing compounds.



## **Detectors**

- 1. Thermal conductivity detector (TCD): Bulk physical property
- **2.** Ionization Detectors:
- **3. Optical Detectors**
- 4. Electrochemical detector
- **5. Spectroscopic detectors (Chapter 9)**

# **Gas Chromatography**

- **1. Introduction**
- **2. Stationary phases**
- 3. Retention in Gas-Liquid Chromatography
- 4. Capillary gas-liquid chromatography
- **5. Sample preparation and inlets**
- 6. Detectors

(Chapter 2 and 3 in The essence of chromatography)